enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.

  3. Naive Bayes spam filtering - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_spam_filtering

    They typically use bag-of-words features to identify email spam, an approach commonly used in text classification. Naive Bayes classifiers work by correlating the use of tokens (typically words, or sometimes other things), with spam and non-spam e-mails and then using Bayes' theorem to calculate a probability that an email is or is not spam.

  4. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    Given the binary nature of classification, a natural selection for a loss function (assuming equal cost for false positives and false negatives) would be the 0-1 loss function (0–1 indicator function), which takes the value of 0 if the predicted classification equals that of the true class or a 1 if the predicted classification does not match ...

  5. Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Bayes_classifier

    In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition

  6. Probabilistic classification - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_classification

    Binary probabilistic classifiers are also called binary regression models in statistics. In econometrics, probabilistic classification in general is called discrete choice. Some classification models, such as naive Bayes, logistic regression and multilayer perceptrons (when trained under an appropriate loss function) are

  7. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    This statistics -related article is a stub. You can help Wikipedia by expanding it.

  8. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    Standard examples of each, all of which are linear classifiers, are: generative classifiers: naive Bayes classifier and; linear discriminant analysis; discriminative model: logistic regression; In application to classification, one wishes to go from an observation x to a label y (or probability distribution on labels

  9. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    Naive Bayes classifier – Probabilistic classification algorithm Perceptron – Algorithm for supervised learning of binary classifiers Quadratic classifier – used in machine learning to separate measurements of two or more classes of objects Pages displaying wikidata descriptions as a fallback