enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.

  3. Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Bayes_classifier

    In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition

  4. Naive Bayes spam filtering - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_spam_filtering

    They typically use bag-of-words features to identify email spam, an approach commonly used in text classification. Naive Bayes classifiers work by correlating the use of tokens (typically words, or sometimes other things), with spam and non-spam e-mails and then using Bayes' theorem to calculate a probability that an email is or is not spam.

  5. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    This statistics -related article is a stub. You can help Wikipedia by expanding it.

  6. Probabilistic classification - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_classification

    Binary probabilistic classifiers are also called binary regression models in statistics. In econometrics, probabilistic classification in general is called discrete choice. Some classification models, such as naive Bayes, logistic regression and multilayer perceptrons (when trained under an appropriate loss function) are

  7. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    The simplest one is Naive Bayes classifier. [2] Using the language of graphical models, the Naive Bayes classifier is described by the equation below. The basic idea (or assumption) of this model is that each category has its own distribution over the codebooks, and that the distributions of each category are observably different.

  8. Classification rule - Wikipedia

    en.wikipedia.org/wiki/Classification_rule

    We can also calculate true positives, false positive, true negative, and false negatives using Bayes' theorem. Using Bayes' theorem will help describe the Probability of an Event (probability theory), based on prior knowledge of conditions that might be related to the event. Expressed are the four classifications using the example below.

  9. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    The girls wear trousers or skirts in equal numbers; all boys wear trousers. An observer sees a (random) student from a distance; all the observer can see is that this student is wearing trousers. What is the probability this student is a girl? The correct answer can be computed using Bayes' theorem.