Search results
Results from the WOW.Com Content Network
Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence.It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics.
Machine learning – subfield of computer science that examines pattern recognition and computational learning theory in artificial intelligence. There are three broad approaches to machine learning. Supervised learning occurs when the machine is given example inputs and outputs by a teacher so that it can learn a rule that maps inputs to outputs.
The RNNsearch model introduced an attention mechanism to seq2seq for machine translation to solve the bottleneck problem (of the fixed-size output vector), allowing the model to process long-distance dependencies more easily. The name is because it "emulates searching through a source sentence during decoding a translation".
High-level schematic diagram of BERT. It takes in a text, tokenizes it into a sequence of tokens, add in optional special tokens, and apply a Transformer encoder. The hidden states of the last layer can then be used as contextual word embeddings. BERT is an "encoder-only" transformer architecture. At a high level, BERT consists of 4 modules:
Natural-language programming (NLP) is an ontology-assisted way of programming in terms of natural-language sentences, e.g. English. [1] A structured document with Content, sections and subsections for explanations of sentences forms a NLP document, which is actually a computer program. Natural language programming is not to be mixed up with ...
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series. [1] The building block of RNNs is the recurrent unit. This unit maintains a hidden state, essentially a form of memory, which is updated at ...
Natural language generation (NLG) is a software process that produces natural language output. A widely-cited survey of NLG methods describes NLG as "the subfield of artificial intelligence and computational linguistics that is concerned with the construction of computer systems that can produce understandable texts in English or other human languages from some underlying non-linguistic ...