Search results
Results from the WOW.Com Content Network
MM XRD: Free open-source: Java 3D applet or standalone program: Ovito: MM XRD EM MD: Free open-source: Python [13] [14] PyMOL: MM XRD SMI EM: Open-source [15] Python [16] [self-published source?] According to the author, almost 1/4 of all published images of 3D protein structures in the scientific literature were made via PyMOL. [citation ...
Visualization of the distribution and interaction of nanoparticles within the matrix can be carried out using techniques like TEM, SEM, and X-ray diffraction (XRD). Carbon nanotube. Nanotubes, specifically carbon nanotubes (CNTs), are cylindrical structures with diameters as small as 1 nanometer. They have remarkable mechanical, electrical, and ...
Python: Documentation and tutorials fully available in ReadTheDocs: geoapps repository [24] The geoapps repository are open-source geoscientific applications in Python, including geophysical data processing, modelling, and inversion codes Mira Geoscience Ltd. MIT: Cross-platform: Python: Documentation and tutorials fully available in ReadTheDocs
X-ray diffraction computed tomography, often abbreviated as XRD-CT, typically refers to the technique invented by Harding et al. [1] which assumes that the acquired data are powder diffraction data. For this reason, it has also been mentioned as powder diffraction computed tomography [ 7 ] and diffraction scattering computed tomography (DSCT ...
A powder X-ray diffractometer in motion. X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract in specific directions.
William Lawrence Bragg proposed a model where the incoming X-rays are scattered specularly (mirror-like) from each plane; from that assumption, X-rays scattered from adjacent planes will combine constructively (constructive interference) when the angle θ between the plane and the X-ray results in a path-length difference that is an integer ...
In X-ray crystallography, wide-angle X-ray scattering (WAXS) or wide-angle X-ray diffraction (WAXD) is the analysis of Bragg peaks scattered to wide angles, which (by Bragg's law) are caused by sub-nanometer-sized structures. [1] It is an X-ray-diffraction [2] method and commonly used to determine a range of information about crystalline materials.
The Voigt profile is normalized: (;,) =,since it is a convolution of normalized profiles. The Lorentzian profile has no moments (other than the zeroth), and so the moment-generating function for the Cauchy distribution is not defined.