Search results
Results from the WOW.Com Content Network
Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables , which is solved by constraint satisfaction methods.
In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. [1]
In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.
Constraint satisfaction toolkits are software libraries for imperative programming languages that are used to encode and solve a constraint satisfaction problem. Cassowary constraint solver, an open source project for constraint satisfaction (accessible from C, Java, Python and other languages). Comet, a commercial programming language and toolkit
This fact has to do with the undecidability of the validity problem for FOL. The question of the status of the validity problem was posed firstly by David Hilbert, as the so-called Entscheidungsproblem. The universal validity of a formula is a semi-decidable problem by Gödel's completeness theorem. If satisfiability were also a semi-decidable ...
An example constraint satisfaction problem; this problem is binary, and the constraints are represented by edges of this graph. A decomposition tree; for every edge of the original graph, there is a node that contains both its endpoints; all nodes containing a variable are connected
As a result, the constraint satisfaction problem can be used to set a constraint whose relation is the table on the right, which may not be in the constraint language. As a result, if a constraint satisfaction problem has the table on the left as its set of solutions, every relation can be expressed by projecting over a suitable set of variables.
In constraint satisfaction, local search is an incomplete method for finding a solution to a problem. It is based on iteratively improving an assignment of the variables until all constraints are satisfied. In particular, local search algorithms typically modify the value of a variable in an assignment at each step.