Search results
Results from the WOW.Com Content Network
Carbon dioxide is absorbed from the atmosphere at the ocean's surface at an exchange rate which varies locally and with time [32] but on average, the oceans have a net absorption of around 2.9 Pg (equivalent to 2.9 billion metric tonnes) of carbon from atmospheric CO 2 per year. [33]
The fast or biological cycle can complete within years, moving carbon from atmosphere to biosphere, then back to the atmosphere. The slow or geological cycle may extend deep into the mantle and can take millions of years to complete, moving carbon through the Earth's crust between rocks, soil, ocean and atmosphere. [2]
The marine carbon cycle involves processes that exchange carbon between various pools within the ocean as well as between the atmosphere, Earth interior, and the seafloor. The carbon cycle is a result of many interacting forces across multiple time and space scales that circulates carbon around the planet, ensuring that carbon is available ...
The exchange between the ocean and atmosphere can take centuries, and the weathering of rocks can take millions of years. Carbon in the ocean precipitates to the ocean floor where it can form sedimentary rock and be subducted into the Earth's mantle. Mountain building processes result in the return of this geologic carbon to the Earth's surface.
Budget calculations of the biological carbon pump are based on the ratio between sedimentation (carbon export to the ocean floor) and remineralization (release of carbon to the atmosphere). The biological pump is not so much the result of a single process, but rather the sum of a number of processes each of which can influence biological pumping.
Carbon moves between the atmosphere, vegetation (dead and alive), the soil, the surface layer of the ocean, and the deep ocean. A detailed model has been developed by Fortunat Joos in Bern and colleagues, called the Bern model. [57]
The Martin curve is a power law used by oceanographers to describe the export to the ocean floor of particulate organic carbon (POC). The curve is controlled with two parameters: the reference depth in the water column, and a remineralisation parameter which is a measure of the rate at which the vertical flux of POC attenuates. [1]
Ocean circulation events cause this process to be variable. For example, during El Nino events there is less deep ocean upwelling, leading to lower outgassing of carbon dioxide into the atmosphere. [18] Biological processes also lead to ocean-atmosphere carbon exchange. Carbon dioxide equilibrates between the atmosphere and the ocean's surface ...