Search results
Results from the WOW.Com Content Network
An achiral molecule having chiral conformations could theoretically form a mixture of right-handed and left-handed crystals, as often happens with racemic mixtures of chiral molecules (see Chiral resolution#Spontaneous resolution and related specialized techniques), or as when achiral liquid silicon dioxide is cooled to the point of becoming ...
Instead, both effects can also occur when the propagation direction of the electromagnetic wave together with the structure of an (achiral) material form a chiral experimental arrangement. [10] [11] This case, where the mutual arrangement of achiral components forms a chiral (experimental) arrangement, is known as extrinsic chirality. [12] [13]
An object that is not chiral is said to be achiral. A chiral object and its mirror image are said to be enantiomorphs. The word chirality is derived from the Greek χείρ (cheir), the hand, the most familiar chiral object; the word enantiomorph stems from the Greek ἐναντίος (enantios) 'opposite' + μορφή (morphe) 'form'.
Chirality with hands and two enantiomers of a generic amino acid The direction of current flow and induced magnetic flux follow a "handness" relationship. The term chiral / ˈ k aɪ r əl / describes an object, especially a molecule, which has or produces a non-superposable mirror image of itself.
In this approach, an enantiomerically pure compound, the chiral selector, is added to the mobile phase and separation happens on a conventional achiral column. When a mixture of enantiomers is introduced into the chromatographic system, the individual enantiomers form transient diastereomeric complexes with the chiral mobile phase additive.
A scalar field model encoding chiral symmetry and its breaking is the chiral model. The most common application is expressed as equal treatment of clockwise and counter-clockwise rotations from a fixed frame of reference. The general principle is often referred to by the name chiral symmetry.
Chance theories are based on the assumption that "Absolute asymmetric synthesis, i.e., the formation of enantiomerically enriched products from achiral precursors without the intervention of chiral chemical reagents or catalysts, is in practice unavoidable on statistical grounds alone". [20]
An achiral environment does not differentiate the molecular twins whereas a chiral environment does distinguish the left-handed version from the right-handed version. Human body, a classic bio-environment, is inherently handed as it is filled with chiral discriminators like amino acids, enzymes, carbohydrates, lipids, nucleic acids, etc.