enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentially modified Gaussian distribution - Wikipedia

    en.wikipedia.org/wiki/Exponentially_modified...

    In probability theory, an exponentially modified Gaussian distribution (EMG, also known as exGaussian distribution) describes the sum of independent normal and exponential random variables. An exGaussian random variable Z may be expressed as Z = X + Y, where X and Y are independent, X is Gaussian with mean μ and variance σ 2, and Y is ...

  3. Exponential family - Wikipedia

    en.wikipedia.org/wiki/Exponential_family

    The terms "distribution" and "family" are often used loosely: Specifically, an exponential family is a set of distributions, where the specific distribution varies with the parameter; [a] however, a parametric family of distributions is often referred to as "a distribution" (like "the normal distribution", meaning "the family of normal distributions"), and the set of all exponential families ...

  4. Tsallis statistics - Wikipedia

    en.wikipedia.org/wiki/Tsallis_statistics

    The q-deformed exponential and logarithmic functions were first introduced in Tsallis statistics in 1994. [1] However, the q -deformation is the Box–Cox transformation for q = 1 − λ {\displaystyle q=1-\lambda } , proposed by George Box and David Cox in 1964.

  5. Exponential distribution - Wikipedia

    en.wikipedia.org/wiki/Exponential_distribution

    In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...

  6. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

  7. Probability distribution fitting - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution...

    When the larger values tend to be farther away from the mean than the smaller values, one has a skew distribution to the right (i.e. there is positive skewness), one may for example select the log-normal distribution (i.e. the log values of the data are normally distributed), the log-logistic distribution (i.e. the log values of the data follow ...

  8. Compound probability distribution - Wikipedia

    en.wikipedia.org/wiki/Compound_probability...

    Compounding a Gaussian distribution with variance distributed according to an exponential distribution whose rate parameter is itself distributed according to a gamma distribution yields a Normal-exponential-gamma distribution. (This involves two compounding stages.

  9. Jeffreys prior - Wikipedia

    en.wikipedia.org/wiki/Jeffreys_prior

    For the Gaussian distribution of the real value () = / with fixed, the Jeffreys prior for the mean is () = [(⁡ ())] = [()] = + () = / That is, the Jeffreys prior for does not depend upon ; it is the unnormalized uniform distribution on the real line — the distribution that is 1 (or some other fixed constant) for all points.