Search results
Results from the WOW.Com Content Network
A Bergman space is an example of a reproducing kernel Hilbert space, which is a Hilbert space of functions along with a kernel K(ζ, z) that verifies a reproducing property analogous to this one. The Hardy space H 2 ( D ) also admits a reproducing kernel, known as the Szegő kernel . [ 37 ]
The first three functions in the sequence () = on [,].As converges weakly to =.. The Hilbert space [,] is the space of the square-integrable functions on the interval [,] equipped with the inner product defined by
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The set of tempered distributions forms a vector subspace of the space of distributions ′ and is thus one example of a space of distributions; there are many other spaces of distributions. There also exist other major classes of test functions that are not subsets of C c ∞ ( U ) , {\displaystyle C_{c}^{\infty }(U),} such as spaces of ...
An example of a compact operator on a Hilbert space that is not self-adjoint is the Volterra operator, defined for a function ([,]) and a value [,] as () = (). It is the operator corresponding to the Volterra integral equations .
The simplest example of a reproducing kernel Hilbert space is the space (,) where is a set and is the counting measure on . For x ∈ X {\displaystyle x\in X} , the reproducing kernel K x {\displaystyle K_{x}} is the indicator function of the one point set { x } ⊂ X {\displaystyle \{x\}\subset X} .
The simplest example of a direct integral are the L 2 spaces associated to a (σ-finite) countably additive measure μ on a measurable space X. Somewhat more generally one can consider a separable Hilbert space H and the space of square-integrable H-valued functions (,).
The Hilbert transform can be understood in terms of a pair of functions f(x) and g(x) such that the function = + is the boundary value of a holomorphic function F(z) in the upper half-plane. [32] Under these circumstances, if f and g are sufficiently integrable, then one is the Hilbert transform of the other.