Search results
Results from the WOW.Com Content Network
rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system. To perform the rotation on a plane point with standard coordinates v = (x, y), it should be written as a column vector, and multiplied by the matrix R:
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
Using the right-hand rule, it can be predicted that the resulting curl would be straight in the negative z direction. Inversely, if placed on x = −3, the object would rotate counterclockwise and the right-hand rule would result in a positive z direction.
Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations , which have no fixed points, and (hyperplane) reflections , each of them having an entire ( n − 1) -dimensional flat of ...
In the passive transformation (right), point P stays fixed, while the coordinate system rotates counterclockwise by an angle θ about its origin. The coordinates of P ′ after the active transformation relative to the original coordinate system are the same as the coordinates of P relative to the rotated coordinate system.
The angular displacement (symbol θ, ϑ, or φ) – also called angle of rotation, rotational displacement, or rotary displacement – of a physical body is the angle (in units of radians, degrees, turns, etc.) through which the body rotates (revolves or spins) around a centre or axis of rotation.
A sphere rotating (spinning) about an axis. Rotation or rotational motion is the circular movement of an object around a central line, known as an axis of rotation.A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation.
Rotate counterclockwise by 2πθ until the first time the orbit lands in J; then switch to the corresponding point in the second circle, rotate by 2πθ until the first time the point lands in J; switch back to the first circle and so forth.