Search results
Results from the WOW.Com Content Network
The fact that light could be polarized was for the first time qualitatively explained by Newton using the particle theory. Étienne-Louis Malus in 1810 created a mathematical particle theory of polarization. Jean-Baptiste Biot in 1812 showed that this theory explained all known phenomena of light polarization. At that time polarization was ...
The applications of photophoresis expand into the various divisions of science, thus physics, chemistry as well as in biology. Photophoresis is applied in particle trapping and levitation, [3] in the field flow fractionation of particles, [4] in the determination of thermal conductivity and temperature of microscopic grains [5] and also in the transport of soot particles in the atmosphere. [6]
A photon (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light') is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force.
The fact that light could be polarized was for the first time qualitatively explained by Newton using the particle theory. Étienne-Louis Malus in 1810 created a mathematical particle theory of polarization. Jean-Baptiste Biot in 1812 showed that this theory explained all known phenomena of light polarization. At that time the polarization was ...
In the late 17th century, Sir Isaac Newton had advocated that light was particles, but Christiaan Huygens took an opposing wave approach. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.
They are non-thermal in origin, and the emission of biophotons is technically a type of bioluminescence, though the term "bioluminescence" is generally reserved for higher luminance systems (typically with emitted light visible to the naked eye, using biochemical means such as luciferin/luciferase).
Photobiology is the scientific study of the beneficial and harmful interactions of light (technically, non-ionizing radiation) in living organisms. [1] The field includes the study of photophysics, photochemistry, photosynthesis, photomorphogenesis, visual processing, circadian rhythms, photomovement, bioluminescence, and ultraviolet radiation effects.
Light scattering by particles is the process by which small particles (e.g. ice crystals, dust, atmospheric particulates, cosmic dust, and blood cells) scatter light causing optical phenomena such as the blue color of the sky, and halos.