Search results
Results from the WOW.Com Content Network
with a corresponding factor graph shown on the right. Observe that the factor graph has a cycle. If we merge (,) (,) into a single factor, the resulting factor graph will be a tree. This is an important distinction, as message passing algorithms are usually exact for trees, but only approximate for graphs with cycles.
Trees with a single root may be viewed as rooted trees in the sense of graph theory in one of two ways: either as a tree (graph theory) or as a trivially perfect graph. In the first case, the graph is the undirected Hasse diagram of the partially ordered set, and in the second case, the graph is simply the underlying (undirected) graph of the ...
A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is a proper edge coloring with k colors.
A rooted tree T that is a subgraph of some graph G is a normal tree if the ends of every T-path in G are comparable in this tree-order (Diestel 2005, p. 15). Rooted trees, often with an additional structure such as an ordering of the neighbors at each vertex, are a key data structure in computer science; see tree data structure.
Every tree in descriptive set theory is also an order-theoretic tree, using a partial ordering in which two sequences and are ordered by < if and only if is a proper prefix of . The empty sequence is the unique minimal element, and each element has a finite and well-ordered set of predecessors (the set of all of its prefixes).
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
[1] [15] Unrooted binary trees with n + 5 / 2 labeled leaves. Each such tree may be formed from a tree with one fewer leaf, by subdividing one of the n tree edges and making the new vertex be the parent of a new leaf. Rooted binary trees with n + 3 / 2 labeled leaves. This case is similar to the unrooted case, but the number of ...