Search results
Results from the WOW.Com Content Network
Flowgorithm is a graphical authoring tool which allows users to write and execute programs using flowcharts. The approach is designed to emphasize the algorithm rather than the syntax of a specific programming language. [1] The flowchart can be converted to several major programming languages. Flowgorithm was created at Sacramento State ...
A maze-solving algorithm is an automated method for solving a maze. The random mouse, wall follower, Pledge, and Trémaux's algorithms are designed to be used inside the maze by a traveler with no prior knowledge of the maze, whereas the dead-end filling and shortest path algorithms are designed to be used by a person or computer program that ...
A simple flowchart representing a process for dealing with a non-functioning lamp.. A flowchart is a type of diagram that represents a workflow or process.A flowchart can also be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving a task.
A decision-to-decision path, or DD-path, is a path of execution (usually through a flow graph representing a program, such as a flow chart) between two decisions. More recent versions of the concept also include the decisions themselves in their own DD-paths. A flow graph of a program. Each color denotes a different DD-path.
These examples are real code from an implementation of the Tetris game. The examples are in DRAKON-JavaScript language. The icons (visual primitives) of the DRAKON language define the overall structure of the algorithms. The code snippets inside the icons (primitives) are in JavaScript.
Children playing Simon Says with "Simon" (the controller) in the foreground. Simon Says is a children's game for three or more players. One player takes the role of "Simon" and issues instructions (usually physical actions such as "jump in the air" or "stick out your tongue") to the other players, which should be followed only when succeeding the phrase "Simon says".
The structured program theorem, also called the Böhm–Jacopini theorem, [1] [2] is a result in programming language theory.It states that a class of control-flow graphs (historically called flowcharts in this context) can compute any computable function if it combines subprograms in only three specific ways (control structures).
Activity diagrams [1] are graphical representations of workflows of stepwise activities and actions [2] with support for choice, iteration, and concurrency. In the Unified Modeling Language, activity diagrams are intended to model both computational and organizational processes (i.e., workflows), as well as the data flows intersecting with the related activities.