enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  3. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not zero, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  4. Nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance

    Bruker 700 MHz nuclear magnetic resonance (NMR) spectrometer. Nuclear Magnetic Resonance (NMR) basic principles. Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field [1]) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic ...

  5. Solid-state nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Solid-state_nuclear...

    Solid-state 900 MHz (21.1 T [1]) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids. Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopy technique used to characterize atomic-level structure and dynamics in solid materials. ssNMR spectra are broader due to nuclear spin interactions which can be categorized as dipolar coupling, chemical shielding ...

  6. Free induction decay - Wikipedia

    en.wikipedia.org/wiki/Free_induction_decay

    Free induction decay (FID) nuclear magnetic resonance signal seen from a well shimmed sample. In Fourier transform nuclear magnetic resonance spectroscopy, free induction decay (FID) is the observable nuclear magnetic resonance (NMR) signal generated by non-equilibrium nuclear spin magnetization precessing about the magnetic field (conventionally along z).

  7. Nuclear magnetic resonance spectroscopy of proteins

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    NMR spectroscopy is nucleus specific. Thus, it can distinguish between hydrogen and deuterium. The amide protons in the protein exchange readily with the solvent, and, if the solvent contains a different isotope, typically deuterium, the reaction can be monitored by NMR spectroscopy. How rapidly a given amide exchanges reflects its solvent ...

  8. Nuclear magnetic resonance crystallography - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    The spin interaction that is usually employed for structural analyses via solid state NMR spectroscopy is the magnetic dipolar interaction. [8] Additional knowledge about other interactions within the studied system like the chemical shift or the electric quadrupole interaction can be helpful as well, and in some cases solely the chemical shift has been employed as e.g. for zeolites. [9]

  9. Magic angle spinning - Wikipedia

    en.wikipedia.org/wiki/Magic_angle_spinning

    In solid-state NMR spectroscopy, magic-angle spinning (MAS) is a technique routinely used to produce better resolution NMR spectra. MAS NMR consists in spinning the sample (usually at a frequency of 1 to 130 kHz ) at the magic angle θ m (ca. 54.74°, where cos 2 θ m =1/3) with respect to the direction of the magnetic field .