Search results
Results from the WOW.Com Content Network
Manganese(II) chloride is the dichloride salt of manganese, MnCl 2.This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl 2 ·2H 2 O) and tetrahydrate (MnCl 2 ·4H 2 O), with the tetrahydrate being the most common form.
atomic mass constant: 1.660 539 068 92 (52) × 10 −27 kg: 3.1 × 10 −10 [54] = / molar mass constant: 1.000 000 001 05 (31) × 10 −3 kg⋅mol −1: 3.1 × 10 −10 [55] molar volume of silicon: 1.205 883 199 (60) × 10 −5 m 3 ⋅mol −1: 4.9 × 10 −8 [56]
The molar mass constant, usually denoted by M u, is a physical constant defined as one twelfth of the molar mass of carbon-12: M u = M(12 C)/12. [1] The molar mass of an element or compound is its relative atomic mass (atomic weight) or relative molecular mass (molecular weight or formula weight) multiplied by the molar mass constant.
The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.
1 J·m 3 /mol 2 = 1 m 6 ·Pa/mol 2 = 10 L 2 ·bar/mol 2. 1 L 2 atm/mol 2 = 0.101325 J·m 3 /mol 2 = 0.101325 Pa·m 6 /mol 2. 1 dm 3 /mol = 1 L/mol = 1 m 3 /kmol = 0.001 m 3 /mol (where kmol is kilomoles = 1000 moles)
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).