Search results
Results from the WOW.Com Content Network
In ZF, a set is infinite if and only if the power set of its power set is a Dedekind-infinite set, having a proper subset equinumerous to itself. [4] If the axiom of choice is also true, then infinite sets are precisely the Dedekind-infinite sets. If an infinite set is a well-orderable set, then it has many well-orderings which are non-isomorphic.
is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the cardinality (or the cardinal number) of the set. A set that is not a finite set is called an infinite set. For example, the set of all positive integers is infinite:
Thus we can make the following definitions: Any set X with cardinality less than that of the natural numbers, or | X | < | N |, is said to be a finite set. Any set X that has the same cardinality as the set of the natural numbers, or | X | = | N | = , is said to be a countably infinite set. [10]
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Within set theory, many collections of sets turn out to be proper classes. Examples include the class of all sets (the universal class), the class of all ordinal numbers, and the class of all cardinal numbers. One way to prove that a class is proper is to place it in bijection with the class of all ordinal numbers.
A set of real numbers (hollow and filled circles), a subset of (filled circles), and the infimum of . Note that for totally ordered finite sets, the infimum and the minimum are equal. A set A {\displaystyle A} of real numbers (blue circles), a set of upper bounds of A {\displaystyle A} (red diamond and circles), and the smallest such upper ...
Cardinality can be used to compare an aspect of finite sets. For example, the sets {1,2,3} and {4,5,6} are not equal, but have the same cardinality, namely three. This is established by the existence of a bijection (i.e., a one-to-one correspondence) between the two sets, such as the correspondence {1→4, 2→5, 3→6}.
Assuming the existence of an infinite set N consisting of all natural numbers and assuming the existence of the power set of any given set allows the definition of a sequence N, P(N), P(P(N)), P(P(P(N))), … of infinite sets where each set is the power set of the set preceding it. By Cantor's theorem, the cardinality of each set in this ...