Search results
Results from the WOW.Com Content Network
As electron kinetic energy and undulator parameters can be adapted as desired, free-electron lasers are tunable and can be built for a wider frequency range than any other type of laser, [3] currently ranging in wavelength from microwaves, through terahertz radiation and infrared, to the visible spectrum, ultraviolet, and X-ray.
Serial femtosecond crystallography (SFX) is a form of X-ray crystallography developed for use at X-ray free-electron lasers (XFELs). [1] [2] [3] Single pulses at free-electron lasers are bright enough to generate resolvable Bragg diffraction from sub-micron crystals. However, these pulses also destroy the crystals, meaning that a full data set ...
This article describes the x-ray lasers in plasmas, only. The plasma x-ray lasers rely on stimulated emission to generate or amplify coherent, directional, high-brightness electromagnetic radiation in the near X-ray or extreme ultraviolet region of the spectrum, that is, usually from ~3 nanometers to several tens of nanometers (nm) wavelength.
Free-electron lasers have been developed for use in X-ray diffraction and crystallography. [27] These are the brightest X-ray sources currently available; with the X-rays coming in femtosecond bursts. The intensity of the source is such that atomic resolution diffraction patterns can be resolved for crystals otherwise too small for collection.
Wavelengths of commercially available lasers. Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser ...
Self-amplified spontaneous emission (SASE) is a process within a free-electron laser (FEL) by which a laser beam is created from a high-energy electron beam. [ 1 ] [ 2 ] The SASE process starts with an electron bunch being injected into an undulator , with a velocity close to the speed of light and a uniform density distribution within the bunch.
The sample is first prepared in an excited state by a laser pulse and then probed by an X-ray pulse. With the advent of XFELs, sources that can provide extremely brilliant (more than five orders of magnitude larger than synchrotron sources) and extremely short X-ray pulses, X-ray spectroscopies performed in a pump and probe fashion are nowadays ...
Pages in category "Free-electron lasers" The following 12 pages are in this category, out of 12 total. This list may not reflect recent changes. ...