enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermodynamic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equilibrium

    In a macroscopic equilibrium, perfectly or almost perfectly balanced microscopic exchanges occur; this is the physical explanation of the notion of macroscopic equilibrium. A thermodynamic system in a state of internal thermodynamic equilibrium has a spatially uniform temperature.

  3. Chemical stability - Wikipedia

    en.wikipedia.org/wiki/Chemical_stability

    Chemical substances or states can persist indefinitely even though they are not in their lowest energy state if they experience metastability - a state which is stable only if not disturbed too much. A substance (or state) might also be termed "kinetically persistent" if it is changing relatively slowly (and thus is not at thermodynamic ...

  4. Thermostability - Wikipedia

    en.wikipedia.org/wiki/Thermostability

    Knowledge of an enzyme's resistance to high temperatures is especially beneficial in protein purification. In the procedure of heat denaturation, one can subject a mixture of proteins to high temperatures, which will result in the denaturation of proteins that are not thermostable, and the isolation of the protein that is thermodynamically stable.

  5. Thermodynamic versus kinetic reaction control - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_versus...

    The electrophilic addition reaction of hydrogen bromide to 1,3-butadiene above room temperature leads predominantly to the thermodynamically more stable 1,4 adduct, 1-bromo-2-butene, but decreasing the reaction temperature to below room temperature favours the kinetic 1,2 adduct, 3-bromo-1-butene. [3] The addition of HBr to butadiene in ether.

  6. Spontaneous process - Wikipedia

    en.wikipedia.org/wiki/Spontaneous_process

    In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamically stable energy state (closer to thermodynamic equilibrium).

  7. Chemical thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Chemical_thermodynamics

    This is a remarkable result since the chemical potentials are intensive system variables, depending only on the local molecular milieu. They cannot "know" whether temperature and pressure (or any other system variables) are going to be held constant over time. It is a purely local criterion and must hold regardless of any such constraints.

  8. Thermodynamic state - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_state

    Thermodynamic temperature is a specifically thermodynamic concept, while the original directly measureable state variables are defined by ordinary physical measurements, without reference to thermodynamic concepts; for this reason, it is helpful to regard thermodynamic temperature as a state function.

  9. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    a) Single possible configuration for a system at absolute zero, i.e., only one microstate is accessible. b) At temperatures greater than absolute zero, multiple microstates are accessible due to atomic vibration (exaggerated in the figure). At absolute zero temperature, the system is in the state with the minimum thermal energy, the ground state.