Search results
Results from the WOW.Com Content Network
Video random-access memory (VRAM) is dedicated computer memory used to store the pixels and other graphics data as a framebuffer to be rendered on a computer monitor. [1] It often uses a different technology than other computer memory, in order to be read quickly for display on a screen.
Graphics DDR SDRAM (GDDR SDRAM) is a type of synchronous dynamic random-access memory (SDRAM) specifically designed for applications requiring high bandwidth, [1] e.g. graphics processing units (GPUs).
Dual-ported video RAM (VRAM) is a dual-ported variant of dynamic RAM (DRAM), which was once commonly used to store the framebuffer in graphics adapters. Dual-ported RAM allows the CPU to read and write data to memory as if it were a conventional DRAM chip, while adding a second port that reads out data.
GDDR5 also uses 8-bit wide prefetch buffers similar to GDDR4 and DDR3 SDRAM. GDDR5 SGRAM conforms to the standards which were set out in the GDDR5 specification by the JEDEC. SGRAM is single-ported. However, it can open two memory pages at once, which simulates the dual-port nature of other VRAM technologies.
The iPhone 8 and iPhone 8 Plus are smartphones developed and marketed by Apple Inc. They are the eleventh generation of the iPhone . The iPhone 8 was released on September 22, 2017, succeeding the iPhone 7 and iPhone 7 Plus , respectively.
Products using LPDDR3 include the 2013 MacBook Air, iPhone 5S, iPhone 6, Nexus 10, Samsung Galaxy S4 (GT-I9500) and Microsoft Surface Pro 3 and 4. [10] LPDDR3 went mainstream in 2013, running at 800 MHz DDR (1600 MT/s), offering bandwidth comparable to PC3-12800 notebook memory in 2011 (12.8 GB/s of bandwidth). [ 11 ]
At Hot Chips 2016, Samsung announced GDDR6 as the successor of GDDR5X. [5] [6] Samsung later announced that the first products would be 16 Gbit/s, 1.35 V chips.[7] [8] In January 2018, Samsung began mass production of 16 Gb (2 GB) GDDR6 chips, fabricated on a 10 nm class process and with a data rate of up to 18 Gbit/s per pin.
The amount of video memory is dependent upon the amount of pre-allocated video memory plus DVMT allocation. DVMT, as its name implies, dynamically allocates system memory for use as video memory to ensure more available resources for 2D/3D graphics performance, e.g. for graphically demanding games.