enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The probability distribution function (and thus likelihood function) for exponential families contain products of factors involving exponentiation. The logarithm of such a function is a sum of products, again easier to differentiate than the original function.

  3. Exponential distribution - Wikipedia

    en.wikipedia.org/wiki/Exponential_distribution

    In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...

  4. Exponential family - Wikipedia

    en.wikipedia.org/wiki/Exponential_family

    The terms "distribution" and "family" are often used loosely: Specifically, an exponential family is a set of distributions, where the specific distribution varies with the parameter; [a] however, a parametric family of distributions is often referred to as "a distribution" (like "the normal distribution", meaning "the family of normal distributions"), and the set of all exponential families ...

  5. Sequential probability ratio test - Wikipedia

    en.wikipedia.org/wiki/Sequential_probability...

    A textbook example is parameter estimation of a probability distribution function.Consider the exponential distribution: =,, >The hypotheses are {: =: = >.Then the log-likelihood function (LLF) for one sample is

  6. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated.This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators.

  7. Maximum spacing estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_spacing_estimation

    The values for which both likelihood and spacing are maximized, the maximum likelihood and maximum spacing estimates, are identified. Suppose two values x (1) = 2, x (2) = 4 were sampled from the exponential distribution F(x;λ) = 1 − e −xλ, x ≥ 0 with unknown parameter λ > 0. In order to construct the MSE we have to first find the ...

  8. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

  9. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    Thus, the Fisher information may be seen as the curvature of the support curve (the graph of the log-likelihood). Near the maximum likelihood estimate, low Fisher information therefore indicates that the maximum appears "blunt", that is, the maximum is shallow and there are many nearby values with a similar log-likelihood. Conversely, high ...