enow.com Web Search

  1. Ad

    related to: generalization of a triangle practice pdf problems 6th

Search results

  1. Results from the WOW.Com Content Network
  2. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    The article contains a history of the problem and a picture featuring the regular triacontagon and its diagonals. In 2015, an anonymous Japanese woman using the pen name "aerile re" published the first known method (the method of 3 circumcenters) to construct a proof in elementary geometry for a special class of adventitious quadrangles problem.

  3. Lester's theorem - Wikipedia

    en.wikipedia.org/wiki/Lester's_theorem

    In 2000, Bernard Gibert proposed a generalization of the Lester Theorem involving the Kiepert hyperbola of a triangle. His result can be stated as follows: Every circle with a diameter that is a chord of the Kiepert hyperbola and perpendicular to the triangle's Euler line passes through the Fermat points. [11] [12]

  4. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    In Euclidean geometry, Ceva's theorem is a theorem about triangles. Given a triangle ABC, let the lines AO, BO, CO be drawn from the vertices to a common point O (not on one of the sides of ABC), to meet opposite sides at D, E, F respectively. (The segments AD, BE, CF are known as cevians.) Then, using signed lengths of segments,

  5. Generalized trigonometry - Wikipedia

    en.wikipedia.org/wiki/Generalized_trigonometry

    Ordinary trigonometry studies triangles in the Euclidean plane ⁠ ⁠.There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions [broken anchor], definitions via differential equations [broken anchor], and definitions using functional equations.

  6. Pappus's area theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_area_theorem

    Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem, is named after the Greek mathematician Pappus of Alexandria (4th century AD), who discovered it.

  7. Conway circle theorem - Wikipedia

    en.wikipedia.org/wiki/Conway_circle_theorem

    In plane geometry, the Conway circle theorem states that when the sides meeting at each vertex of a triangle are extended by the length of the opposite side, the six endpoints of the three resulting line segments lie on a circle whose centre is the incentre of the triangle.

  8. Graph removal lemma - Wikipedia

    en.wikipedia.org/wiki/Graph_removal_lemma

    The special case in which the subgraph is a triangle is known as the triangle removal lemma. [2] The graph removal lemma can be used to prove Roth's theorem on 3-term arithmetic progressions, [3] and a generalization of it, the hypergraph removal lemma, can be used to prove Szemerédi's theorem. [4] It also has applications to property testing. [5]

  9. Napoleon's theorem - Wikipedia

    en.wikipedia.org/wiki/Napoleon's_theorem

    Then two triangles A 1 B 1 C 1 and A 2 B 2 C 2 are equilateral triangles [24] Dao's third generalization: Simulation with K moved on the Kiepert hyperbola and P moved on the FK, F=X(14)-the first Fermat point. Dao's third generalization: Let ABC be a triangle with F is the first (or second) Fermat point, let K be arbitrary point on the Kiepert ...

  1. Ad

    related to: generalization of a triangle practice pdf problems 6th