enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  3. Charge number - Wikipedia

    en.wikipedia.org/wiki/Charge_number

    The charge number equals the electric charge (q, in coulombs) divided by the elementary charge: z = q/e. Atomic numbers (Z) are a special case of charge numbers, referring to the charge number of an atomic nucleus, as opposed to the net charge of an atom or ion. The charge numbers for ions (and also subatomic particles) are written in ...

  4. Elementary charge - Wikipedia

    en.wikipedia.org/wiki/Elementary_charge

    Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not ⁠ 1 / 2 ⁠ e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)

  5. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    Euler's great interest in number theory can be traced to the influence of his friend in the St. Peterburg Academy, Christian Goldbach. A lot of his early work on number theory was based on the works of Pierre de Fermat, and developed some of Fermat's ideas. One focus of Euler's work was to link the nature of prime distribution with ideas in ...

  6. Introductio in analysin infinitorum - Wikipedia

    en.wikipedia.org/wiki/Introductio_in_analysin...

    Euler's number e corresponds to shaded area equal to 1, introduced in chapter VII Introductio in analysin infinitorum ( Latin : [ 1 ] Introduction to the Analysis of the Infinite ) is a two-volume work by Leonhard Euler which lays the foundations of mathematical analysis .

  7. Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/Leonhard_Euler

    Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər; [b] German: [ˈleːɔnhaʁt ˈʔɔʏlɐ] ⓘ, Swiss Standard German: [ˈleɔnhard ˈɔʏlər]; 15 April 1707 – 18 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician, and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in many other branches of ...

  8. List of topics named after Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/List_of_topics_named_after...

    Euler number (algebraic topology) – now, Euler characteristic, classically the number of vertices minus edges plus faces of a polyhedron. Euler number (3-manifold topology) – see Seifert fiber space; Lucky numbers of Euler; Euler's constant gamma (γ), also known as the Euler–Mascheroni constant

  9. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    The number e (e = 2.718...), also known as Euler's number, which occurs widely in mathematical analysis The number i , the imaginary unit such that i 2 = − 1 {\displaystyle i^{2}=-1} The equation is often given in the form of an expression set equal to zero, which is common practice in several areas of mathematics.