Search results
Results from the WOW.Com Content Network
If an NPSH A is say 10 bar then the pump you are using will deliver exactly 10 bar more over the entire operational curve of a pump than its listed operational curve. Example: A pump with a max. pressure head of 8 bar (80 metres) will actually run at 18 bar if the NPSH A is 10 bar. i.e.: 8 bar (pump curve) plus 10 bar NPSH A = 18 bar.
Fluid flow in an external gear pump. A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy (hydrostatic energy i.e. flow, pressure). Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. They generate flow with enough power to overcome pressure induced by a ...
However, many hydraulic pumps cannot be used as hydraulic motors because they cannot be backdriven. Also, a hydraulic motor is usually designed for working pressure at both sides of the motor, whereas most hydraulic pumps rely on low pressure provided from the reservoir at the input side and would leak fluid when abused as a motor. [1]
The PTU solves this problem by allowing a rotary mechanical coupling between both systems, so the engine driven pump for the yellow (right hand) system on the starboard engine, which is oversized for normal hydraulic demand, can dump the excess power into the green system via the PTU, and allow powered landing gear retraction to continue, while ...
A fluid power system has a pump driven by a prime mover (such as an electric motor or internal combustion engine) that converts mechanical energy into fluid energy, Pressurized fluid is controlled and directed by valves into an actuator device such as a hydraulic cylinder or pneumatic cylinder, to provide linear motion, or a hydraulic motor or pneumatic motor, to provide rotary motion or torque.
In hydraulic systems, a fuse (or velocity fuse) is a component which prevents the sudden loss of hydraulic fluid pressure.It is a safety feature, designed to allow systems to continue operating, or at least to not fail catastrophically, in the event of a system breach.
The affinity laws (also known as the "Fan Laws" or "Pump Laws") for pumps/fans are used in hydraulics, hydronics and/or HVAC to express the relationship between variables involved in pump or fan performance (such as head, volumetric flow rate, shaft speed) and power. They apply to pumps, fans, and hydraulic turbines. In these rotary implements ...
A fluid coupling consists of three components, plus the hydraulic fluid: The housing, also known as the shell [5] (which must have an oil-tight seal around the drive shafts), contains the fluid and turbines. Two turbines (fanlike components): One connected to the input shaft; known as the pump or impeller, [5] or primary wheel input turbine. [5]