enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The bounds these inequalities give on a finite sample are less tight than those the Chebyshev inequality gives for a distribution. To illustrate this let the sample size N = 100 and let k = 3. Chebyshev's inequality states that at most approximately 11.11% of the distribution will lie at least three standard deviations away from the mean.

  3. Chebyshev's sum inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_sum_inequality

    In mathematics, Chebyshev's sum inequality, named after Pafnuty Chebyshev, states that if ...

  4. Coupon collector's problem - Wikipedia

    en.wikipedia.org/wiki/Coupon_collector's_problem

    In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...

  5. Chebyshev's theorem - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_theorem

    Chebyshev's sum inequality, about sums and products of decreasing sequences Chebyshev's equioscillation theorem , on the approximation of continuous functions with polynomials The statement that if the function π ( x ) ln ⁡ x / x {\textstyle \pi (x)\ln x/x} has a limit at infinity, then the limit is 1 (where π is the prime-counting function).

  6. Multidimensional Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_Chebyshev...

    This is a generalization of the requirement that X have finite variance, and is necessary for this strong form of Chebyshev's inequality in infinite dimensions. The terminology "strong order two" is due to Vakhania. [4] Let be the Pettis integral of X (i.e., the vector generalization of the mean), and let

  7. Consistent estimator - Wikipedia

    en.wikipedia.org/wiki/Consistent_estimator

    the most common choice for function h being either the absolute value (in which case it is known as Markov inequality), or the quadratic function (respectively Chebyshev's inequality). Another useful result is the continuous mapping theorem : if T n is consistent for θ and g (·) is a real-valued function continuous at point θ , then g ( T n ...

  8. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Bhatia–Davis inequality, an upper bound on the variance of any bounded probability distribution; Bernstein inequalities (probability theory) Boole's inequality; Borell–TIS inequality; BRS-inequality; Burkholder's inequality; Burkholder–Davis–Gundy inequalities; Cantelli's inequality; Chebyshev's inequality; Chernoff's inequality; Chung ...

  9. Chebyshev–Markov–Stieltjes inequalities - Wikipedia

    en.wikipedia.org/wiki/Chebyshev–Markov...

    In mathematical analysis, the Chebyshev–Markov–Stieltjes inequalities are inequalities related to the problem of moments that were formulated in the 1880s by Pafnuty Chebyshev and proved independently by Andrey Markov and (somewhat later) by Thomas Jan Stieltjes. [1]