enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monic polynomial - Wikipedia

    en.wikipedia.org/wiki/Monic_polynomial

    A product of monic polynomials is monic. A product of polynomials is monic if and only if the product of the leading coefficients of the factors equals 1. This implies that, the monic polynomials in a univariate polynomial ring over a commutative ring form a monoid under polynomial multiplication. Two monic polynomials are associated if and ...

  3. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    The roots of the characteristic polynomial () are the eigenvalues of ().If there are n distinct eigenvalues , …,, then () is diagonalizable as () =, where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ 's: = [], = [].

  4. Algebraic integer - Wikipedia

    en.wikipedia.org/wiki/Algebraic_integer

    For example, if x 2 − x − 1 = 0, y 3 − y − 1 = 0 and z = xy, then eliminating x and y from z − xy = 0 and the polynomials satisfied by x and y using the resultant gives z 6 − 3z 4 − 4z 3 + z 2 + z − 1 = 0, which is irreducible, and is the monic equation satisfied by the product.

  5. Chebyshev nodes - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_nodes

    This product is a monic polynomial of degree n. It may be shown that the maximum absolute value (maximum norm) of any such polynomial is bounded from below by 2 1−n. This bound is attained by the scaled Chebyshev polynomials 2 1−n T n, which are also monic. (Recall that |T n (x)| ≤ 1 for x ∈ [−1, 1]. [5])

  6. Mahler measure - Wikipedia

    en.wikipedia.org/wiki/Mahler_measure

    He pointed out that the classical Kronecker's theorem, which characterizes monic polynomials with integer coefficients all of whose roots are inside the unit disk, can be regarded as characterizing those polynomials of one variable whose measure is exactly 1, and that this result extends to polynomials in several variables. [6]

  7. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    Applied to the monic polynomial + = with all coefficients a k considered as free parameters, this means that every symmetric polynomial expression S(x 1,...,x n) in its roots can be expressed instead as a polynomial expression P(a 1,...,a n) in terms of its coefficients only, in other words without requiring knowledge of the roots.

  8. Generic polynomial - Wikipedia

    en.wikipedia.org/wiki/Generic_polynomial

    The symmetric group S n.This is trivial, as + + + is a generic polynomial for S n.. Cyclic groups C n, where n is not divisible by eight. Lenstra showed that a cyclic group does not have a generic polynomial if n is divisible by eight, and G. W. Smith explicitly constructs such a polynomial in case n is not divisible by eight.

  9. Minimal polynomial (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(linear...

    In linear algebra, the minimal polynomial μ A of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μ A. The following three statements are equivalent: λ is a root of μ A, λ is a root of the characteristic polynomial χ A ...