Search results
Results from the WOW.Com Content Network
Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6] Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds.
A map is a local diffeomorphism if and only if it is a smooth immersion (smooth local embedding) and an open map. The inverse function theorem implies that a smooth map f : X → Y {\displaystyle f:X\to Y} is a local diffeomorphism if and only if the derivative D f x : T x X → T f ( x ) Y {\displaystyle Df_{x}:T_{x}X\to T_{f(x)}Y} is a linear ...
Conversely, given any contact manifold M, the product M×R has a natural structure of a symplectic manifold. If α is a contact form on M, then ω = d(e t α) is a symplectic form on M×R, where t denotes the variable in the R-direction. This new manifold is called the symplectization (sometimes symplectification in the literature) of the ...
However, if the action is free and proper, then / has a unique smooth structure such that the projection / is a submersion (in fact, / is a principal -bundle). [ 2 ] The fact that M / G {\displaystyle M/G} is Hausdorff depends only on the properness of the action (as discussed above); the rest of the claim requires freeness and is a consequence ...
In the theory of smooth manifolds, a congruence is the set of integral curves defined by a nonvanishing vector field defined on the manifold. Congruences are an important concept in general relativity , and are also important in parts of Riemannian geometry .
Let M be a smooth manifold. A (smooth) singular k-simplex in M is defined as a smooth map from the standard simplex in R k to M. The group C k (M, Z) of singular k-chains on M is defined to be the free abelian group on the set of singular k-simplices in M. These groups, together with the boundary map, ∂, define a chain complex.
A relatively 'easy' result is to prove that any two embeddings of a 1-manifold into are isotopic (see Knot theory#Higher dimensions). This is proved using general position, which also allows to show that any two embeddings of an n-manifold into + are isotopic. This result is an isotopy version of the weak Whitney embedding theorem.
A smooth structure on a manifold is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold is an atlas for such that each transition function is a smooth map, and two smooth atlases for are smoothly equivalent provided their union is again a smooth atlas for .