enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optical resolution - Wikipedia

    en.wikipedia.org/wiki/Optical_resolution

    An imaging system may have many individual components, including one or more lenses, and/or recording and display components. Each of these contributes (given suitable design, and adequate alignment) to the optical resolution of the system; the environment in which the imaging is done often is a further important factor.

  3. Optical heterodyne detection - Wikipedia

    en.wikipedia.org/wiki/Optical_heterodyne_detection

    The light signal is compared with standard or reference light from a "local oscillator" (LO) that would have a fixed offset in frequency and phase from the signal if the latter carried null information. "Heterodyne" signifies more than one frequency, in contrast to the single frequency employed in homodyne detection. [1]

  4. Optical microscope - Wikipedia

    en.wikipedia.org/wiki/Optical_microscope

    The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.

  5. Pupil function - Wikipedia

    en.wikipedia.org/wiki/Pupil_function

    The pupil function or aperture function describes how a light wave is affected upon transmission through an optical imaging system such as a camera, microscope, or the human eye. More specifically, it is a complex function of the position in the pupil [ 1 ] or aperture (often an iris ) that indicates the relative change in amplitude and phase ...

  6. Optical transfer function - Wikipedia

    en.wikipedia.org/wiki/Optical_transfer_function

    In both cases the numerical aperture of the objective is 1.49 and the refractive index of the medium 1.52. The wavelength of the emitted light is assumed to be 600 nm and, in case of the confocal microscope, that of the excitation light 500 nm with circular polarization. A section is cut to visualize the internal intensity distribution.

  7. Diffraction-limited system - Wikipedia

    en.wikipedia.org/wiki/Diffraction-limited_system

    Memorial in Jena, Germany to Ernst Karl Abbe, who approximated the diffraction limit of a microscope as = ⁡, where d is the resolvable feature size, λ is the wavelength of light, n is the index of refraction of the medium being imaged in, and θ (depicted as α in the inscription) is the half-angle subtended by the optical objective lens (representing the numerical aperture).

  8. Interferometric microscopy - Wikipedia

    en.wikipedia.org/wiki/Interferometric_microscopy

    As the combined image keeps both amplitude and phase information, the interferometric microscopy can be especially efficient for the phase objects, [3] allowing detection of light variations of index of refraction, which cause the phase shift or the light passing through for a small fraction of a radian.

  9. Spectroradiometer - Wikipedia

    en.wikipedia.org/wiki/Spectroradiometer

    A spectroradiometer is a light measurement tool that is able to measure both the wavelength and amplitude of the light emitted from a light source. Spectrometers discriminate the wavelength based on the position the light hits at the detector array allowing the full spectrum to be obtained with a single acquisition.