Search results
Results from the WOW.Com Content Network
Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: Additive because it is added to any noise that might be intrinsic to the information system.
In signal processing theory, Gaussian noise, named after Carl Friedrich Gauss, is a kind of signal noise that has a probability density function (pdf) equal to that of the normal distribution (which is also known as the Gaussian distribution). [1] [2] In other words, the values that the noise can take are Gaussian-distributed. The probability ...
Analogous to Laplace mechanism, Gaussian mechanism adds noise drawn from a Gaussian distribution whose variance is calibrated according to the sensitivity and privacy parameters. For any δ ∈ ( 0 , 1 ) {\displaystyle \delta \in (0,1)} and ϵ ∈ ( 0 , 1 ) {\displaystyle \epsilon \in (0,1)} , the mechanism defined by:
This model is called a Gaussian white noise signal (or process). In the mathematical field known as white noise analysis, a Gaussian white noise is defined as a stochastic tempered distribution, i.e. a random variable with values in the space ′ of tempered distributions.
The regularization parameter plays a critical role in the denoising process. When =, there is no smoothing and the result is the same as minimizing the sum of squares.As , however, the total variation term plays an increasingly strong role, which forces the result to have smaller total variation, at the expense of being less like the input (noisy) signal.
The transformation is called "whitening" because it changes the input vector into a white noise vector. Several other transformations are closely related to whitening: the decorrelation transform removes only the correlations but leaves variances intact, the standardization transform sets variances to 1 but leaves correlations intact,
If we model our noisy channel as an AWGN channel, white Gaussian noise is added to the signal. At the receiver end, for a Signal-to-noise ratio of 3 dB, this may look like: At the receiver end, for a Signal-to-noise ratio of 3 dB, this may look like:
Shape of the impulse response of a typical Gaussian filter. In electronics and signal processing, mainly in digital signal processing, a Gaussian filter is a filter whose impulse response is a Gaussian function (or an approximation to it, since a true Gaussian response would have infinite impulse response).