Search results
Results from the WOW.Com Content Network
Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: Additive because it is added to any noise that might be intrinsic to the information system.
In signal processing theory, Gaussian noise, named after Carl Friedrich Gauss, is a kind of signal noise that has a probability density function (pdf) equal to that of the normal distribution (which is also known as the Gaussian distribution). [1] [2] In other words, the values that the noise can take are Gaussian-distributed.
Analogous to Laplace mechanism, Gaussian mechanism adds noise drawn from a Gaussian distribution whose variance is calibrated according to the sensitivity and privacy parameters. For any δ ∈ ( 0 , 1 ) {\displaystyle \delta \in (0,1)} and ϵ ∈ ( 0 , 1 ) {\displaystyle \epsilon \in (0,1)} , the mechanism defined by:
An example of a random vector that is Gaussian white noise in the weak but not in the strong sense is = [,] where is a normal random variable with zero mean, and is equal to + or to , with equal probability. These two variables are uncorrelated and individually normally distributed, but they are not jointly normally distributed and are not ...
Phase truncation spurs can be reduced substantially by the introduction of white gaussian noise prior to truncation. The so-called dither noise is summed into the lower W+1 bits of the PA output word to linearize the truncation operation. Often the improvement can be achieved without penalty because the DAC noise floor tends to dominate system ...
The regularization parameter plays a critical role in the denoising process. When =, there is no smoothing and the result is the same as minimizing the sum of squares.As , however, the total variation term plays an increasingly strong role, which forces the result to have smaller total variation, at the expense of being less like the input (noisy) signal.
A whitening transformation or sphering transformation is a linear transformation that transforms a vector of random variables with a known covariance matrix into a set of new variables whose covariance is the identity matrix, meaning that they are uncorrelated and each have variance 1. [1]
Shape of the impulse response of a typical Gaussian filter. In electronics and signal processing, mainly in digital signal processing, a Gaussian filter is a filter whose impulse response is a Gaussian function (or an approximation to it, since a true Gaussian response would have infinite impulse response).