Search results
Results from the WOW.Com Content Network
Perlin noise is a type of gradient noise developed by Ken Perlin in 1983. It has many uses, including but not limited to: procedurally generating terrain , applying pseudo-random changes to a variable, and assisting in the creation of image textures .
In signal processing theory, Gaussian noise, named after Carl Friedrich Gauss, is a kind of signal noise that has a probability density function (pdf) equal to that of the normal distribution (which is also known as the Gaussian distribution). [1] [2] In other words, the values that the noise can take are Gaussian-distributed.
Perlin noise is the earliest form of lattice noise, which has become very popular in computer graphics. Perlin Noise is not suited for simulation because it is not divergence-free. Noises based on lattices, such as simulation noise and Perlin noise, are often calculated at different frequencies and summed together to form band-limited fractal ...
Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: Additive because it is added to any noise that might be intrinsic to the information system.
The regularization parameter plays a critical role in the denoising process. When =, there is no smoothing and the result is the same as minimizing the sum of squares.As , however, the total variation term plays an increasingly strong role, which forces the result to have smaller total variation, at the expense of being less like the input (noisy) signal.
Analogous to Laplace mechanism, Gaussian mechanism adds noise drawn from a Gaussian distribution whose variance is calibrated according to the sensitivity and privacy parameters. For any δ ∈ ( 0 , 1 ) {\displaystyle \delta \in (0,1)} and ϵ ∈ ( 0 , 1 ) {\displaystyle \epsilon \in (0,1)} , the mechanism defined by:
Zener diode based noise source. A noise generator is a circuit that produces electrical noise (i.e., a random signal). Noise generators are used to test signals for measuring noise figure, frequency response, and other parameters. Noise generators are also used for generating random numbers. [1]
This model is called a Gaussian white noise signal (or process). In the mathematical field known as white noise analysis, a Gaussian white noise is defined as a stochastic tempered distribution, i.e. a random variable with values in the space ′ of tempered distributions.