enow.com Web Search

  1. Ad

    related to: remainder theorem in number system examples
  2. generationgenius.com has been visited by 100K+ users in the past month

Search results

  1. Results from the WOW.Com Content Network
  2. Chinese remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Chinese_remainder_theorem

    Chinese remainder theorem. Sunzi's original formulation: x ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7) with the solution x = 23 + 105k, with k an integer. In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the ...

  3. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.

  4. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    Modular multiplicative inverses are used to obtain a solution of a system of linear congruences that is guaranteed by the Chinese Remainder Theorem. For example, the system X ≡ 4 (mod 5) X ≡ 4 (mod 7) X ≡ 6 (mod 11) has common solutions since 5,7 and 11 are pairwise coprime. A solution is given by

  5. Number theory - Wikipedia

    en.wikipedia.org/wiki/Number_theory

    Mathematics. Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." [1]

  6. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5, which is d. This holds in general. When dividing by d, either both remainders are positive and therefore equal, or they have opposite signs. If the positive remainder is r 1, and the negative one is r 2, then r 1 = r 2 + d.

  7. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    As an example, the greatest common divisor of 15 and 69 is 3, and 3 can be written as a combination of 15 and 69 as 3 = 15 × (−9) + 69 × 2, with Bézout coefficients −9 and 2. Many other theorems in elementary number theory, such as Euclid's lemma or the Chinese remainder theorem , result from Bézout's identity.

  8. Quadratic residue - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residue

    All odd squares are ≡ 1 (mod 8) and thus also ≡ 1 (mod 4). If a is an odd number and m = 8, 16, or some higher power of 2, then a is a residue modulo m if and only if a ≡ 1 (mod 8). [7] For example, mod (32) the odd squares are 1 2 ≡ 15 2 ≡ 1 3 2 ≡ 13 2 ≡ 9 5 2 ≡ 11 2 ≡ 25 7 2 ≡ 9 2 ≡ 49 ≡ 17. and the even ones are 0 2 ...

  9. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  1. Ad

    related to: remainder theorem in number system examples