enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]

  3. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    A division algorithm is an algorithm which, given two integers N and D (respectively the numerator and the denominator), computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Division algorithms fall into two main categories: slow ...

  4. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Euclidean algorithm. Euclid's method for finding the greatest common divisor (GCD) of two starting lengths BA and DC, both defined to be multiples of a common "unit" length. The length DC being shorter, it is used to "measure" BA, but only once because the remainder EA is less than DC.

  5. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    Fermat's little theorem. In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number ap − a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as. For example, if a = 2 and p = 7, then 27 = 128, and 128 − 2 = 126 = 7 × 18 is an integer multiple of 7.

  6. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...

  7. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit. It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime, starting with the first prime number, 2. The multiples of a given prime are generated as a sequence of numbers starting from that ...

  8. Python (programming language) - Wikipedia

    en.wikipedia.org/wiki/Python_(programming_language)

    Python is a multi-paradigm programming language. Object-oriented programming and structured programming are fully supported, and many of their features support functional programming and aspect-oriented programming (including metaprogramming [73] and metaobjects). [74] Many other paradigms are supported via extensions, including design by ...

  9. Luhn algorithm - Wikipedia

    en.wikipedia.org/wiki/Luhn_algorithm

    Luhn algorithm. The Luhn algorithm or Luhn formula, also known as the " modulus 10" or "mod 10" algorithm, named after its creator, IBM scientist Hans Peter Luhn, is a simple check digit formula used to validate a variety of identification numbers. It is described in US patent 2950048A, granted on 23 August 1960. [1]

  1. Related searches how to find the remainder in python program in c++ with example test

    how to find the remainder in python program in c++ with example test questions