Search results
Results from the WOW.Com Content Network
The first column sum is the probability that x =0 and y equals any of the values it can have – that is, the column sum 6/9 is the marginal probability that x=0. If we want to find the probability that y=0 given that x=0, we compute the fraction of the probabilities in the x=0 column that have the value y=0, which is 4/9 ÷
A finite regular continued fraction, where is a non-negative integer, is an integer, and is a positive integer, for . A continued fraction is a mathematical expression that can be writen as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple ...
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 2 , − 8 5 , −8 5 , and 8 −5 .
A continued fraction is an expression of the form. where the an (n > 0) are the partial numerators, the bn are the partial denominators, and the leading term b0 is called the integer part of the continued fraction. The successive convergents of the continued fraction are formed by applying the fundamental recurrence formulas:
A complex fraction is a fraction whose numerator or denominator, or both, contains a fraction. A simple fraction contains no fraction either in its numerator or its denominator. A fraction is in lowest terms if the only factor common to the numerator and the denominator is 1. An expression which is not in fractional form is an integral ...
For instance, the continued fraction representation of 13 ⁄ 9 is [1;2,4] and its two children are [1;2,5] = 16 ⁄ 11 (the right child) and [1;2,3,2] = 23 ⁄ 16 (the left child). It is clear that for each finite continued fraction expression one can repeatedly move to its parent, and reach the root [1;]= 1 ⁄ 1 of the tree in finitely many ...
However, if the fraction 1/1 is replaced by the fraction 2/2, which is an equivalent fraction denoting the same rational number 1, the mediant of the fractions 2/2 and 1/2 is 3/4. For a stronger connection to rational numbers the fractions may be required to be reduced to lowest terms, thereby selecting unique representatives from the ...
The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument. Domain coloring representation of the convergent of the function , where is ...