Search results
Results from the WOW.Com Content Network
Diffeomorphometry is the metric study of imagery, shape and form in the discipline of computational anatomy (CA) in medical imaging.The study of images in computational anatomy rely on high-dimensional diffeomorphism groups which generate orbits of the form {}, in which images can be dense scalar magnetic resonance or computed axial tomography images.
Testing whether a differentiable map is a diffeomorphism can be made locally under some mild restrictions. This is the Hadamard-Caccioppoli theorem: [1] If , are connected open subsets of such that is simply connected, a differentiable map : is a diffeomorphism if it is proper and if the differential: is bijective (and hence a linear isomorphism) at each point in .
A diffeomorphic mapping system is a system designed to map, manipulate, and transfer information which is stored in many types of spatially distributed medical imagery. Diffeomorphic mapping is the underlying technology for mapping and analyzing information measured in human anatomical coordinate systems which have been measured via Medical ...
Recall that a topological manifold is a topological space which is locally homeomorphic to . Differentiable manifolds generalize the notion of smoothness on in the following sense: a differentiable manifold is a topological manifold with a differentiable atlas, i.e. a collection of maps from open subsets of to the manifold which are used to "pull back" the differential structure from to the ...
Computational anatomy is an interdisciplinary field of biology focused on quantitative investigation and modelling of anatomical shapes variability. [1] [2] It involves the development and application of mathematical, statistical and data-analytical methods for modelling and simulation of biological structures.
Cheeger and Gromoll's soul theorem states: [1]. If (M, g) is a complete connected Riemannian manifold with nonnegative sectional curvature, then there exists a closed totally convex, totally geodesic embedded submanifold whose normal bundle is diffeomorphic to M.
The Lie group SO(3) is diffeomorphic to the real projective space (). [4] Consider the solid ball in of radius π (that is, all points of of distance π or less from the origin). Given the above, for every point in this ball there is a rotation, with axis through the point and the origin, and rotation angle equal to the distance of the point ...
A map is a local diffeomorphism if and only if it is a smooth immersion (smooth local embedding) and an open map.. The inverse function theorem implies that a smooth map : is a local diffeomorphism if and only if the derivative: is a linear isomorphism for all points .