enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Involutory matrix - Wikipedia

    en.wikipedia.org/wiki/Involutory_matrix

    I is the 3 × 3 identity matrix (which is trivially involutory); R is the 3 × 3 identity matrix with a pair of interchanged rows; S is a signature matrix. Any block-diagonal matrices constructed from involutory matrices will also be involutory, as a consequence of the linear independence of the blocks.

  3. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    In linear algebra, the identity matrix of size is the square matrix with ... It is an involutory matrix, equal to its own inverse. In this group, two square matrices ...

  4. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex Hermitian matrices means that we can express any Hermitian matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  5. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...

  6. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A square matrix derived by applying an elementary row operation to the identity matrix. Equivalent matrix: A matrix that can be derived from another matrix through a sequence of elementary row or column operations. Frobenius matrix: A square matrix in the form of an identity matrix but with arbitrary entries in one column below the main diagonal.

  7. Exchange matrix - Wikipedia

    en.wikipedia.org/wiki/Exchange_matrix

    In mathematics, especially linear algebra, the exchange matrices (also called the reversal matrix, backward identity, or standard involutory permutation) are special cases of permutation matrices, where the 1 elements reside on the antidiagonal and all other elements are zero.

  8. Affine involution - Wikipedia

    en.wikipedia.org/wiki/Affine_involution

    To give a linear involution is the same as giving an involutory matrix, a square matrix A such that = where I is the identity matrix.. It is a quick check that a square matrix D whose elements are all zero off the main diagonal and ±1 on the diagonal, that is, a signature matrix of the form

  9. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury [1] [2] – says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix.