Search results
Results from the WOW.Com Content Network
Difference between Z-test and t-test: Z-test is used when sample size is large (n>50), or the population variance is known. t-test is used when sample size is small (n<50) and population variance is unknown. There is no universal constant at which the sample size is generally considered large enough to justify use of the plug-in test.
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
In educational assessment, T-score is a standard score Z shifted and scaled to have a mean of 50 and a standard deviation of 10. [ 14 ] [ 15 ] [ 16 ] In bone density measurements, the T-score is the standard score of the measurement compared to the population of healthy 30-year-old adults, and has the usual mean of 0 and standard deviation of 1.
To find a negative value such as -0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327. But since the normal distribution curve is symmetrical, probabilities for only positive values of Z are typically given.
The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2). For example, Φ(2) ≈ 0.9772, or Pr(X ≤ μ + 2σ) ≈ 0.9772, corresponding to a prediction interval of (1 − (1 − 0.97725)·2) = 0.9545 = 95.45%. This is not a symmetrical interval – this is merely the probability that an ...
The Z-factor defines a characteristic parameter of the capability of hit identification for each given assay. The following categorization of HTS assay quality by the value of the Z-Factor is a modification of Table 1 shown in Zhang et al. (1999); [2] note that the Z-factor cannot exceed one.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
(z is the distance from the mean in relation to the standard deviation of the mean). For non-normal distributions it is possible to calculate a minimum proportion of a population that falls within k standard deviations for any k (see: Chebyshev's inequality). Two-sample z-test