enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Baryogenesis - Wikipedia

    en.wikipedia.org/wiki/Baryogenesis

    In physical cosmology, baryogenesis (also known as baryosynthesis [1] [2]) is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, i.e. the imbalance of matter and antimatter (antibaryons) in the observed universe.

  3. List of unsolved problems in astronomy - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Since 2003, Jean-Pierre Luminet, et al., and other groups have suggested that the shape of the universe may be the Poincaré dodecahedral space. Is the shape unmeasurable, the Poincaré space, or another 3-manifold? Cosmic inflation: Is the theory of cosmic inflation in the very early universe correct? If so, what are the details of this epoch?

  4. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...

  5. Baryon asymmetry - Wikipedia

    en.wikipedia.org/wiki/Baryon_asymmetry

    In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, [1] [2] is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and antibaryonic matter in the observable universe.

  6. Antimatter - Wikipedia

    en.wikipedia.org/wiki/Antimatter

    Antimatter may exist in relatively large amounts in far-away galaxies due to cosmic inflation in the primordial time of the universe. Antimatter galaxies, if they exist, are expected to have the same chemistry and absorption and emission spectra as normal-matter galaxies, and their astronomical objects would be observationally identical, making ...

  7. Cosmic inflation - Wikipedia

    en.wikipedia.org/wiki/Cosmic_inflation

    Many physicists also believe that inflation explains why the universe appears to be the same in all directions , why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed. The detailed particle physics mechanism responsible for inflation is unknown.

  8. Universe - Wikipedia

    en.wikipedia.org/wiki/Universe

    The physical universe is defined as all of space and time [a] (collectively referred to as spacetime) and their contents. [10] Such contents comprise all of energy in its various forms, including electromagnetic radiation and matter, and therefore planets, moons, stars, galaxies, and the contents of intergalactic space.

  9. Quantum foam - Wikipedia

    en.wikipedia.org/wiki/Quantum_foam

    A graphic representation of Wheeler's calculations of what quantum reality may look like at the Planck length. Quantum foam (or spacetime foam, or spacetime bubble) is a theoretical quantum fluctuation of spacetime on very small scales due to quantum mechanics.