enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor (possibly negative). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. Its eigenvectors are those ...

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  4. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix.The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently.

  5. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    There is an eigenvalue bound for independent sets in regular graphs, originally due to Alan J. Hoffman and Philippe Delsarte. [ 13 ] Suppose that G {\displaystyle G} is a k {\displaystyle k} -regular graph on n {\displaystyle n} vertices with least eigenvalue λ m i n {\displaystyle \lambda _{\mathrm {min} }} .

  6. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    In numerical linear algebra, the Rayleigh–Ritz method is commonly [12] applied to approximate an eigenvalue problem = for the matrix of size using a projected matrix of a smaller size <, generated from a given matrix with orthonormal columns. The matrix version of the algorithm is the most simple:

  7. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    Download as PDF; Printable version; In other projects ... In numerical linear algebra, the Jacobi eigenvalue algorithm is an iterative method for the calculation of ...

  8. Eigenvalue perturbation - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_perturbation

    In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...

  9. Min-max theorem - Wikipedia

    en.wikipedia.org/wiki/Min-max_theorem

    In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces.