Search results
Results from the WOW.Com Content Network
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
Explicitly, we imagine dividing up a circle into triangles, each with a height equal to the circle's radius and a base that is infinitesimally small. The area of each of these triangles is equal to /. By summing up (integrating) all of the areas of these triangles, we arrive at the formula for the circle's area:
Chord: a line segment whose endpoints lie on the circle, thus dividing a circle into two segments. Circumference: the length of one circuit along the circle, or the distance around the circle. Diameter: a line segment whose endpoints lie on the circle and that passes through the centre; or the length of such a line segment. This is the largest ...
The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants, each bounded by two half-axes. The axes themselves are ...
Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .
A circle can be divided into sectors which rearrange to form an approximate parallelogram Main article: Area of a circle The formula for the area of a circle (more properly called the area enclosed by a circle or the area of a disk ) is based on a similar method.
The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter. The optimal three-dimensional structure for making honeycomb (or rather, soap bubbles) was investigated by Lord Kelvin , who believed that the Kelvin structure (or body-centered cubic lattice) is ...
Maximise area of smallest region by using 3-fold symmetry with the 2 inscribed triangles offset by 48.71°. 23:27, 8 April 2019: ... Dividing a circle into areas;