Search results
Results from the WOW.Com Content Network
The magnetic field of a current loop. The ring represents the current loop, which goes into the page at the x and comes out at the dot. In classical physics, the magnetic field of a dipole is calculated as the limit of either a current loop or a pair of charges as the source shrinks to a point while keeping the magnetic moment m constant.
The magnetic field frequency range can be anywhere from near DC (0 Hz) to many kilohertz or even megahertz (MHz). An AC Helmholtz coil driver is needed to generate the required time-varying magnetic field. The waveform amplifier driver must be able to output high AC current to produce the magnetic field.
Bending a current-carrying wire into a loop concentrates the magnetic field inside the loop while weakening it outside. Bending a wire into multiple closely spaced loops to form a coil or "solenoid" enhances this effect. A device so formed around an iron core may act as an electromagnet, generating a strong, well-controlled magnetic field. An ...
The magnetic field between poles (see the figure for Magnetic pole model) is in the opposite direction to the magnetic moment (which points from the negative charge to the positive charge), while inside a current loop it is in the same direction (see the figure to the right). The limits of these fields must also be different as the sources ...
Either an electric current is passed through the wire of the coil to generate a magnetic field, or conversely, an external time-varying magnetic field through the interior of the coil generates an EMF in the conductor. A current through any conductor creates a circular magnetic field around the conductor due to Ampere's law. [3]
Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.
The original form of Maxwell's circuital law, which he derived as early as 1855 in his paper "On Faraday's Lines of Force" [9] based on an analogy to hydrodynamics, relates magnetic fields to electric currents that produce them. It determines the magnetic field associated with a given current, or the current associated with a given magnetic field.
The rotating magnetic field is the key principle in the operation of induction machines.The induction motor consists of a stator and rotor.In the stator a group of fixed windings are so arranged that a two phase current, for example, produces a magnetic field which rotates at an angular velocity determined by the frequency of the alternating current.