Search results
Results from the WOW.Com Content Network
For example, in a sample of 706 hotels in New York City, average daily water use intensity in 2011 ranged from 60 to 456 gallons per 1000 square feet (g/ksf/d), with the median use of 215 g/ksf/d. [11] In other areas the median use per 1000 square feet were reported at: 257 gallons in Florida, [10] and 219 gallons in Austin, Texas. [11]
A smooth and rounded outlet has c=0.9, a square and sharp outlet has c=0.8, and a square outlet which projects into the barrel has c=0.7. d = diameter of the outlet (inches) p = stagnation pressure or pitot pressure (velocity head) (pounds per square inch)
A Fixture Unit is not a flow rate unit but a design factor. A fixture unit is equal to 1 cubic foot (0.028 m 3) of water drained in a 1 + 1 ⁄ 4 inches (32 mm) diameter pipe over one minute. [2] One cubic foot of water is roughly 7.48 US gallons (28.3 L; 6.23 imp gal). A Fixture Unit is used in plumbing design for both water supply and waste ...
The miner’s inch measures the amount of water that would flow through a slot of a given area at a given pressure (for example, at a head of 6 inches of water, or 1.5 kPa.) In miner's inch the word inch refers to the area of the slot in square inches, while the pressure in inches of water refers to the height of water above the slot. A ...
h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)
As the name suggests, an acre-foot is defined as the volume of one acre of surface area to a depth of one foot.. Since an acre is defined as a chain by a furlong (i.e. 66 ft × 660 ft or 20.12 m × 201.17 m), an acre-foot is 43,560 cubic feet (1,233.5 m 3).
SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve.
K-Factors have also previously been calculated and published using the United States customary units of pound per square inch (psi) and gallon per minute (gpm). Within the United States, US measurements are still often used instead of metric. [3] [4]