Search results
Results from the WOW.Com Content Network
Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...
A sequence obeying the order-d equation also obeys all higher order equations. These identities may be proved in a number of ways, including via the theory of finite differences. [9] Any sequence of + integer, real, or complex values can be used as initial conditions for a constant-recursive sequence of order +.
Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Pandas is built around data structures called Series and DataFrames. Data for these collections can be imported from various file formats such as comma-separated values, JSON, Parquet, SQL database tables or queries, and Microsoft Excel. [8] A Series is a 1-dimensional data structure built on top of NumPy's array.
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
Consider the infinite sequence of points P n, where P n is the harmonic conjugate of P n-3 with respect to P n-1, P n-2 for n > 2. This sequence is convergent. [11] For a finite limit P we have + = = =,
One of several methods of finding a series formula for fractional iteration, making use of a fixed point, is as follows. [15] First determine a fixed point for the function such that f(a) = a. Define f n (a) = a for all n belonging to the reals. This, in some ways, is the most natural extra condition to place upon the fractional iterates.