Search results
Results from the WOW.Com Content Network
Here are the conversion factors for those various expressions of wind speed: 1 m/s = 2.237 statute mile/h = 1.944 knots 1 knot = 1.151 statute mile/h = 0.514 m/s 1 statute mile/h = 0.869 knots = 0.447 m/s. Note: 1 statute mile = 5,280 feet = 1,609 meters
The conversion equations depend on the temperature at which the conversion is wanted (usually about 20 to 25 °C). At an ambient sea level atmospheric pressure of 1 atm (101.325 kPa or 1.01325 bar), the general equation is:
This gives a = 100 μg/mL if the drug stays in the blood stream only, and thus its volume of distribution is the same as that is = 0.08 L/kg. If the drug distributes into all body water the volume of distribution would increase to approximately V D = {\displaystyle V_{D}=} 0.57 L/kg [ 8 ]
{{convert|100|lb|kg}} → 100 pounds (45 kg) The unit-codes should be treated as case-sensitive: {{convert|100|Mm|mm}} → 100 megametres (1.0 × 10 11 mm) The output of {{convert}} can display multiple converted units, if further unit-codes are specified after the second unnamed parameter (without the pipe separator). Typical combination ...
Reference ranges for blood tests are 32 to 36 g/dL (320 to 360g/L), [1] or between 4.81 and 5.58 mmol/L. It is thus a mass or molar concentration . Still, many instances measure MCHC in percentage (%), as if it were a mass fraction (m Hb / m RBC ).
Lambda (written λ, in lowercase) is a non-SI unit of volume equal to 10 −9 m 3, 1 cubic millimetre (mm 3) or 1 microlitre (μL).Introduced by the BIPM in 1880, [1] the lambda has been used in chemistry [2] and in law for measuring volume, but its use is not recommended.
Normally, MCV is expressed in femtoliters (fL, or 10 −15 L), and [RBC] in millions per microliter (10 6 / μL). The normal range for MCV is 80–100 fL. The normal range for MCV is 80–100 fL. If the hematocrit is expressed as a percentage, the red blood cell concentration as millions per microliter, and the MCV in femtoliters, the formula ...
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]