enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decay heat - Wikipedia

    en.wikipedia.org/wiki/Decay_heat

    Decay heat as fraction of full power for a reactor SCRAMed from full power at time 0, using two different correlations. In a typical nuclear fission reaction, 187 MeV of energy are released instantaneously in the form of kinetic energy from the fission products, kinetic energy from the fission neutrons, instantaneous gamma rays, or gamma rays from the capture of neutrons. [7]

  3. Nuclear reactor heat removal - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reactor_heat_removal

    The removal of heat from nuclear reactors is an essential step in the generation of energy from nuclear reactions.In nuclear engineering there are a number of empirical or semi-empirical relations used for quantifying the process of removing heat from a nuclear reactor core so that the reactor operates in the projected temperature interval that depends on the materials used in the construction ...

  4. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0 N D = Number of atoms decayed at time t = + dimensionless dimensionless Decay rate, activity of a radioisotope: A = Bq = Hz = s −1 [T] −1: Decay constant: λ

  5. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.

  6. Spent nuclear fuel - Wikipedia

    en.wikipedia.org/wiki/Spent_nuclear_fuel

    For this reason, at the moment of reactor shutdown, decay heat will be about 7% of the previous core power if the reactor has had a long and steady power history. About 1 hour after shutdown, the decay heat will be about 1.5% of the previous core power. After a day, the decay heat falls to 0.4%, and after a week it will be 0.2%.

  7. Decay energy - Wikipedia

    en.wikipedia.org/wiki/Decay_energy

    The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E . If A is the radioactive activity , i.e. the number of transforming atoms per time, M the molar mass, then the radiation power P is:

  8. Nuclear reactor - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reactor

    A fission fragment reactor is a nuclear reactor that generates electricity by decelerating an ion beam of fission byproducts instead of using nuclear reactions to generate heat. By doing so, it bypasses the Carnot cycle and can achieve efficiencies of up to 90% instead of 40–45% attainable by efficient turbine-driven thermal reactors.

  9. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [ 1 ] and the analytical solution was provided by Harry Bateman in 1910.