enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Right circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Right_circular_cylinder

    A right circular cylinder is a cylinder whose generatrices are perpendicular to the bases. Thus, in a right circular cylinder, the generatrix and the height have the same measurements. [ 1] It is also less often called a cylinder of revolution, because it can be obtained by rotating a rectangle of sides and around one of its sides.

  3. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    This formula holds whether or not the cylinder is a right cylinder. [7] This formula may be established by using Cavalieri's principle. A solid elliptic right cylinder with the semi-axes a and b for the base ellipse and height h. In more generality, by the same principle, the volume of any cylinder is the product of the area of a base and the ...

  4. Steinmetz solid - Wikipedia

    en.wikipedia.org/wiki/Steinmetz_solid

    The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...

  5. Morison equation - Wikipedia

    en.wikipedia.org/wiki/Morison_equation

    The Morison equation is a heuristic formulation of the force fluctuations in an oscillatory flow. The first assumption is that the flow acceleration is more-or-less uniform at the location of the body. For instance, for a vertical cylinder in surface gravity waves this requires that the diameter of the cylinder is much smaller than the wavelength.

  6. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    If one knows that the volume of a cone is (), then one can use Cavalieri's principle to derive the fact that the volume of a sphere is , where is the radius. That is done as follows: Consider a sphere of radius r {\displaystyle r} and a cylinder of radius r {\displaystyle r} and height r {\displaystyle r} .

  7. Potential flow around a circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Potential_flow_around_a...

    On the surface of the cylinder, or r = R, pressure varies from a maximum of 1 (shown in the diagram in red) at the stagnation points at θ = 0 and θ = π to a minimum of −3 (shown in blue) on the sides of the cylinder, at θ = ⁠ π / 2 ⁠ and θ = ⁠ 3π / 2 ⁠. Likewise, V varies from V = 0 at the stagnation points to V = 2U on the ...

  8. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m -1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus.

  9. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    On the Sphere and Cylinder ( Greek: Περὶ σφαίρας καὶ κυλίνδρου) is a treatise that was published by Archimedes in two volumes c. 225 BCE. [ 1] It most notably details how to find the surface area of a sphere and the volume of the contained ball and the analogous values for a cylinder, and was the first to do so. [ 2]