enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    The formula for exponential growth of a variable x at the growth rate r, ... The differential equation is solved by direct integration: = = = ⁡ ...

  3. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation: =

  4. Plant growth analysis - Wikipedia

    en.wikipedia.org/wiki/Plant_growth_analysis

    He applied the same mathematical formula to describe plant size over time. The equation for exponential mass growth rate in plant growth analysis is often expressed as: = ⁡ Where: M(t) is the final mass of the plant at time (t). M 0 is the initial mass of the plant.

  5. Relative growth rate - Wikipedia

    en.wikipedia.org/wiki/Relative_growth_rate

    When calculating or discussing relative growth rate, it is important to pay attention to the units of time being considered. [2] For example, if an initial population of S 0 bacteria doubles every twenty minutes, then at time interval it is given by solving the equation:

  6. Monod equation - Wikipedia

    en.wikipedia.org/wiki/Monod_equation

    The Monod equation is a mathematical model for the growth of microorganisms. It is named for Jacques Monod (1910–1976, a French biochemist, Nobel Prize in Physiology or Medicine in 1965), who proposed using an equation of this form to relate microbial growth rates in an aqueous environment to the concentration of a limiting nutrient.

  7. Doubling time - Wikipedia

    en.wikipedia.org/wiki/Doubling_time

    The doubling time is a characteristic unit (a natural unit of scale) for the exponential growth equation, and its converse for exponential decay is the half-life. As an example, Canada's net population growth was 2.7 percent in the year 2022, dividing 72 by 2.7 gives an approximate doubling time of about 27 years.

  8. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential growth or exponential decay—where the varaible change is proportional to the variable value—are thus modeled with exponential functions. Examples are unlimited population growth leading to Malthusian catastrophe, continuously compounded interest, and radioactive decay.

  9. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. [1] Most commonly apparent in species that reproduce quickly and asexually , like bacteria , exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.