Search results
Results from the WOW.Com Content Network
Its eigenfunctions form a basis of the function space on which the operator is defined [5] As a consequence, in many important cases, the eigenfunctions of the Hermitian operator form an orthonormal basis. In these cases, an arbitrary function can be expressed as a linear combination of the eigenfunctions of the Hermitian operator.
and the problem is, given the continuous kernel function and the function , to find the function .. An important case of these types of equation is the case when the kernel is a function only of the difference of its arguments, namely (,) = (), and the limits of integration are ±∞, then the right hand side of the equation can be rewritten as a convolution of the functions and and therefore ...
The example here, based on the Mona Lisa, provides a simple illustration. Each point on the painting can be represented as a vector pointing from the center of the painting to that point. The linear transformation in this example is called a shear mapping. Points in the top half are moved to the right, and points in the bottom half are moved to ...
These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables, as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid, which is presented as a Kronecker sum of discrete Laplacians in one-dimension.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
If we use the third choice of domain (with periodic boundary conditions), we can find an orthonormal basis of eigenvectors for A, the functions ():=. Thus, in this case finding a domain such that A is self-adjoint is a compromise: the domain has to be small enough so that A is symmetric, but large enough so that D ( A ∗ ) = D ( A ...
For example, the eigenstate of ^ corresponding to the eigenvalue can be labelled as | . Such an observable is itself a self-sufficient CSCO. Such an observable is itself a self-sufficient CSCO. However, if some of the eigenvalues of a n {\displaystyle a_{n}} are degenerate (such as having degenerate energy levels ), then the above result no ...
In mathematics, a nonlinear eigenproblem, sometimes nonlinear eigenvalue problem, is a generalization of the (ordinary) eigenvalue problem to equations that depend nonlinearly on the eigenvalue.