enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    SciPy (de facto standard for scientific Python) has scipy.optimize solver, which includes several nonlinear programming algorithms (zero-order, first order and second order ones). IPOPT (C++ implementation, with numerous interfaces including C, Fortran, Java, AMPL, R, Python, etc.) is an interior point method solver (zero-order, and optionally ...

  3. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    The GEKKO Python package [1] solves large-scale mixed-integer and differential algebraic equations with nonlinear programming solvers (IPOPT, APOPT, BPOPT, SNOPT, MINOS). Modes of operation include machine learning, data reconciliation, real-time optimization, dynamic simulation, and nonlinear model predictive control.

  4. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Methods for solving differential-algebraic equations (DAEs), i.e., ODEs with constraints: Constraint algorithm — for solving Newton's equations with constraints; Pantelides algorithm — for reducing the index of a DEA; Methods for solving stochastic differential equations (SDEs): Euler–Maruyama method — generalization of the Euler method ...

  5. Newton–Krylov method - Wikipedia

    en.wikipedia.org/wiki/Newton–Krylov_method

    Newton–Krylov methods are numerical methods for solving non-linear problems using Krylov subspace linear solvers. [1] [2] Generalising the Newton method to systems of multiple variables, the iteration formula includes a Jacobian matrix. Solving this directly would involve calculation of the Jacobian's inverse, when the Jacobian matrix itself ...

  6. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...

  7. Numerical continuation - Wikipedia

    en.wikipedia.org/wiki/Numerical_continuation

    Numerical continuation is a method of computing approximate solutions of a system of parameterized nonlinear equations, F ( u , λ ) = 0. {\displaystyle F(\mathbf {u} ,\lambda )=0.} [ 1 ] The parameter λ {\displaystyle \lambda } is usually a real scalar and the solution u {\displaystyle \mathbf {u} } is an n -vector .

  8. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    This equation is an example of very sensitive initial conditions for the Levenberg–Marquardt algorithm. One reason for this sensitivity is the existence of multiple minima — the function cos ⁡ ( β x ) {\displaystyle \cos \left(\beta x\right)} has minima at parameter value β ^ {\displaystyle {\hat {\beta }}} and β ^ + 2 n π ...

  9. List of numerical libraries - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_libraries

    SU2 code is an open-source library for solving partial differential equations with the finite volume or finite element method. Trilinos is an effort to develop algorithms and enabling technologies for the solution of large-scale, complex multi-physics engineering and scientific problems.