Search results
Results from the WOW.Com Content Network
As it attacks and forms a bond with one of the carbons, the bond between the first bromine atom and the other carbon atoms breaks, leaving each carbon atom with a halogen substituent. In this way the two halogens add in an anti addition fashion, and when the alkene is part of a cycle the dibromide adopts the trans configuration.
Dihydroxylation is the process by which an alkene is converted into a vicinal diol. Although there are many routes to accomplish this oxidation, the most common and direct processes use a high-oxidation-state transition metal (typically osmium or manganese). The metal is often used as a catalyst, with some other stoichiometric oxidant present. [1]
In organic chemistry, the E i mechanism (Elimination Internal/Intramolecular), also known as a thermal syn elimination or a pericyclic syn elimination, is a special type of elimination reaction in which two vicinal (adjacent) substituents on an alkane framework leave simultaneously via a cyclic transition state to form an alkene in a syn elimination. [1]
A [3+2]-cycloaddition with the alkene (3) gives the cyclic intermediate 4. [ 9 ] [ 10 ] Basic hydrolysis liberates the diol ( 5 ) and the reduced osmate ( 6 ). Methanesulfonamide (CH 3 SO 2 NH 2 ) has been identified as a catalyst to accelerate this step of the catalytic cycle and if frequently used as an additive to allow non-terminal alkene ...
The Upjohn dihydroxylation is an organic reaction which converts an alkene to a cis vicinal diol. It was developed by V. VanRheenen, R. C. Kelly and D. Y. Cha of the Upjohn Company in 1976. [1] It is a catalytic system using N-methylmorpholine N-oxide (NMO) as stoichiometric re-oxidant for the osmium tetroxide. It is superior to previous ...
The Milas hydroxylation is an organic reaction converting an alkene to a vicinal diol, and was developed by Nicholas A. Milas in the 1930s. [1] [2] The cis-diol is formed by reaction of alkenes with hydrogen peroxide and either ultraviolet light or a catalytic osmium tetroxide, [3] vanadium pentoxide, or chromium trioxide.
Such reactions give alkenes in the case of vicinal alkyl dihalides: [2] R 2 C(X)C(X)R 2 + M → R 2 C=CR 2 + MX 2. Most desirable from the perspective of remediation are dehalogenations by hydrogenolysis, i.e. the replacement of a C−X bond by a C−H bond. Such reactions are amenable to catalysis: R−X + H 2 → R−H + HX
The Sharpless oxyamination (often known as Sharpless aminohydroxylation) is the chemical reaction that converts an alkene to a vicinal amino alcohol.The reaction is related to the Sharpless dihydroxylation, which converts alkenes to vicinal diols. [1]