enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    In the Python library NumPy, the outer product can be computed with function np.outer(). [8] In contrast, np.kron results in a flat array. The outer product of multidimensional arrays can be computed using np.multiply.outer.

  3. Array (data type) - Wikipedia

    en.wikipedia.org/wiki/Array_(data_type)

    Such a collection is usually called an array variable or array value. [1] By analogy with the mathematical concepts vector and matrix, array types with one and two indices are often called vector type and matrix type, respectively. More generally, a multidimensional array type can be called a tensor type, by analogy with the physical concept ...

  4. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.

  5. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...

  6. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch defines a class called Tensor (torch.Tensor) to store and operate on homogeneous multidimensional rectangular arrays of numbers.PyTorch Tensors are similar to NumPy Arrays, but can also be operated on a CUDA-capable NVIDIA GPU.

  7. Theano (software) - Wikipedia

    en.wikipedia.org/wiki/Theano_(software)

    import theano from theano import tensor # Declare two symbolic floating-point scalars a = tensor. dscalar b = tensor. dscalar # Create a simple expression c = a + b # Convert the expression into a callable object that takes (a, b) # values as input and computes a value for c f = theano. function ([a, b], c) # Bind 1.5 to 'a', 2.5 to 'b', and evaluate 'c' assert 4.0 == f (1.5, 2.5)

  8. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions. In R , function vec() of package 'ks' allows vectorization and function vech() implemented in both packages 'ks' and 'sn' allows half-vectorization.

  9. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is a part of the NumPy ecosystem array libraries [7] and is widely adopted to utilize GPU with Python, [8] especially in high-performance computing environments such as Summit, [9] Perlmutter, [10] EULER, [11] and ABCI.